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High-order algorithms for vascular �ow modelling
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SUMMARY

This paper presents the development of spectral=hp high-order elements for vascular �ows with par-
ticular attention to surface reconstruction and high-order mesh generation. Using ideas from computer
visualization we apply a technique of constructing smooth implicit functions to reconstruct incomplete
sectional imaging data from magnetic resonance imaging. Using this as a starting point we outline
techniques to discretize and computationally solve the Newtonian �ow within these geometries us-
ing high-order spectral=hp element methods. Finally we demonstrate the application of these ideas to
anatomically correct and model distal bypass grafts. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There is growing evidence that the development of vascular diseases such as atherosclerosis
and myo-intimal hyperplasia is in�uenced by local haemodynamics within blood vessels [1].
The need to model relevant �ow features, e.g. shear stresses and residence times, has driven
the use of computational methods to model vascular �ows. These �ows are complex as the
geometry of the vessels is intricate, the �ow is pulsatile and typically Reynolds number
regimes are of the order where viscous and inertial e�ects are both signi�cant [2].
Non-invasive magnetic resonance imaging (MRI) and CFD techniques are complementary in

the study of arterial �ows since MRI techniques enable measurements of the in vivo geometry.
Further quantitative MRI velocimetry methods also permit the determination of the in vivo
velocity �eld. However it is generally impractical to measure the velocity at more than a
few locations in vivo, and the measurements are not su�ciently well resolved to determine
parameters such as wall shear stresses.
Compact high-order algorithms, such as spectral element or p-type �nite element techniques,

o�er the potential of high accuracy if the solution is smooth and a well behaved mapping
exists between the local sub-domains and a standard region. The ability to construct suitable
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138 J. PEIR �O ET AL.

computational meshes is currently a signi�cant limiting factor in the development of high-order
algorithms in very complex geometries.
In this paper we will address two signi�cant issues in applying the numerical approach to

vascular �ow modelling. First, in Section 2, we discuss the process of reconstructing in a
reproduceable fashion a surface representing an in vivo geometry from the incomplete infor-
mation provided by MRI or ultrasound data. Second, in Section 3, we look at the application
of curvature based re�nement to take into account higher order information, such as surface
curvature, in the mesh generation process. In Section 4, we brie�y outline the spectral=hp
element approach. Finally, in Section 5, we demonstrate the application of this technique to
modelling bypass geometries.

2. IMPLICIT SURFACE RECONSTRUCTION FROM MEDICAL IMAGES

As mentioned previously, the development of non-invasive imaging techniques, such as MRI,
over the last 10 years has provided a crucial contribution to simulation of the in vivo �ow
within diseased arterial vessels. However the data it provides is necessarily a series of
two-dimensional sections. Further, the time available for data acquisition by non-invasive
techniques such as magnetic resonance imaging (MRI) or ultrasound is restricted by patient
comfort. It ranges from a few minutes to about an hour depending on the �tness of the pa-
tient and this therefore limits the number of data sections that can be acquired. Di�culties
in reconstructing the arterial geometry arise mainly through the need to extrapolate informa-
tion which is missing as a consequence of the limited spatial resolution of medical images.
A typical example is the branch of an arterial bifurcation where the topology of the images
changes between consecutive sections. The complex geometry of the apex of the bifurcation
is often missing as illustrated in Figure 1.
Turk and O’Brien [3] have demonstrated that implicit functions can be used to smoothly

interpolate between topologically di�erent sections. As explained below, this interpolation
method de�nes the surface representation as the iso-surface corresponding to a zero value
of an implicit function. This function is obtained using a radial basis interpolation through
a set of given points. The choice of radial basis is determined from the minimization of a
Sobolev functional chosen to maintain surface smoothness (typically in curvature) between

Figure 1. Schematic of changes in topology across sections of a branching artery.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:137–151



HIGH-ORDER ALGORITHMS FOR VASCULAR FLOW MODELLING 139

Figure 2. Image segmentation: Area selection, edge detection and spline interpolation with boundary
and interior constraints shown.

the interpolation information. Based on this idea, the process of reconstructing the geometry
of the vessels from MRI data proceeds as follows.
The starting point of the reconstruction process is a set of MRI slices of the geometry.

These slices are represented by matrices of 512× 512 pixels. Each pixel is assigned a value of
intensity on a greyscale to form the image. Image segmentation techniques for edge detection
using a freeware scion image package [4] are then applied to identify the vessel wall, i.e. the
surface of the object to be reconstructed. As Figure 2 shows, this results in a jagged-edge
representation of the boundary that has to be suitably smoothed. This is accomplished by
interpolation using the least-squares technique proposed in Reference [5].
The image segmentation process is repeated for all the available MRI sections to obtain a

set of B-spline curves representing cross sections of the vessel wall. These curves are then
used to �t an implicit function f(x), where x=(x1; x2; x3) denotes the Cartesian co-ordinates
of a point, and the surface is then implicitly represented as the zero iso-contour of the function
f(x), i.e. the surface will be represented by

f(x)=f(x1; x2; x3)=0: (1)

We continue de�ning the implicit function as a linear combination of radial functions
associated with N di�erent constraints at a set of discrete points xi; i=1; : : : ; N , i.e.

f(x)=
n∑
i=1
ci�(|x − xi|) (2)

where � represents a radial basis function which depends on the distance between points at
a location x and the constraint point xi. Following the construction in Turk and O’Brien we
consider the radial basis function proposed by Duchon in Reference [6]. In this work Duchon
de�ned a family of semi-norms

‖f‖m; s=
(∫

�n
|x|2s|F{Dmf(x)}|2 dx

)1=2

where F denotes the Fourier transform. Minimizing these semi-norms subject to some in-
terpolating conditions leads to simple basis functions which are independent of co-ordinate
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scaling. This family is an extension of the thin-plate interpolation (s=0, n=2 and m=2)
where the functional reduces to ∫

�2
{f2xx + 2f2xy + f2yy} dx

and the minimizing basis functions lead to thin-plate functions of the form

�(|x − xi|)= |x − xi|2 log(|x − xi|):
Motivated by Reference [7] we consider the case of ‘pseudo-polynomial splines’ which are
derived from minimizing the semi-norm when s=(n−1)=2, n=3, and m=2. These give rise
to radial basis functions of the form

�(|x − xi|)= |x − xi|3: (3)

Strictly speaking there should also be an order one polynomial subspace which accounts for
the linear and constant portions of f but this is not necessary ‘when considering more than
a dozen constraints’ [7].
Finally the problem of �nding an implicit function through a set of constraints f(xi)= hi:

1; : : : ; N is reduced to that of calculating the expansion coe�cients ci in Equation (2). The
evaluation of the coe�cients ci requires the solution of a positive semi-de�nite linear system
equations of the form

Ac= h (4)

which can be solved using LU decomposition. The entries of the matrix A are

aij= |xi − xj|3 (5)

and hi represents the value of the implicit function imposed at point xi. To make the spline
interpolations within each MRI data section conform to the zero iso-contour of the function
f(x) we evaluate a discrete set of points, typically 30, within each spline section and set
f(xi)= hi=0 at these points. To ensure that system (4) has a non-trivial solution we must
also specify some non-zero constraints. These are chosen as interior points within each section
as illustrated in Figure 2 and determined by choosing, for each point of the discrete set, a
point displaced by a small value along the normal direction to the spline �t. An example of
the interpolation of the implicit function through MRI data of a femoral–tibial bypass graft
is shown in Figure 3.
A triangular representation of the surface as depicted in Figure 3(c) can also be obtained

by using iso-surface extraction techniques [8]. In this work we have used the e�cient implicit
surface polygonization method proposed by Bloomenthal in Reference [9] which minimizes
the number of function evaluations using appropriate range searching techniques.
The mesh obtained in this fashion is perfectly suitable for graphic display and even

manufacturing, for instance using laser stereolithographic techniques. Figure 4 shows a resin
cast of the bypass graft created from a triangulation similar to the one shown in Figure 3.
Such an approach permits the geometry to be scaled to double its original dimensions which
is very convenient when performing detailed experimental studies. The use of implicit func-
tions for mesh generation presents several challenges since most of the required geometric
operations become non-linear problems. The only exception is the operation of determining
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Figure 3. Interpolation of a set of MRI images of a femoral bypass graft using the implicit function
approach: (a) interpolated slice data (1500 points), (b) a shaded view of the iso-surface correspond-
ing to the zero value of the implicit function and (c) surface triangulation generated by the surface

polygonization technique proposed by Bloomenthal in Reference [9].

Figure 4. Stereolithography model of the bypass graft.

whether a point belongs to the surface which is trivial when such an implicit form is used.
Further, the quality of the triangulation produced is not su�ciently good for it to be used as
the starting point of the generation of a 3D volume. Consequently, further steps are required
to achieve a surface mesh of reasonable quality for CFD.
One possible remedy is to reconstruct surface curvature information from the triangulation

and perform mesh enhancement operations to improve its quality as proposed in Reference
[10]. The degree of smoothness that can be achieved in the new triangulation is determined
by the noise present in the initial triangulation and the inherent limitations of a reconstruction
of curvature from discrete data.
We have followed an alternative strategy that is compatible with our mesh generation

methodology and, moreover, permits better control of the smoothness of the interpolated sur-
face. We adopt a boundary representation (B-Rep) of the domain. The B-Rep model provides
a de�nition of the domain as the 3D region interior to a boundary surface composed by a
set of trimmed surfaces. A trimmed surface is a region on a surface interior to an oriented
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Figure 5. Reconstruction of a B-Rep de�nition of the graft by means of spline curves and surfaces.

set of edges on the surface. The edges and surfaces in the B-Rep model of the domain are
represented using splines curves and surfaces. Even though the generation of bicubic spline
patches that reproduce a zero level set of an implicit function is not a straightforward pro-
cedure, this process can be automated with little e�ort. In this work, an interactive tool that
allows the user to select points on the smooth implicit surface is used to obtain Coons patches
that are reasonably close to the original implicit surface. Splines are then drawn through these
points and a patch is computed choosing four boundary curves. Patches obtained from this
method are rough approximations of the implicit surface since they are only based on the
information the user conveys by selecting a discrete number of points. These patches are then
automatically projected at a higher resolution of discrete points onto the implicit surface using
an algorithm proposed by Hartmann [11]. At the end of this procedure, the implicit surface
is represented by a collection of points that are grouped in rectangular entities as shown in
Figure 5.

3. MESH GENERATION OF HIGH-ORDER ELEMENTS

The extension of standard unstructured mesh generation technology to high-order algorithms
is a non-trivial exercise. Complications arise due to the con�icting requirements to generate
coarse meshes whilst maintaining good elemental properties in regions of high curvature as
shown in Figure 6 where we illustrate the type of invalid elements which can arise.
In our approach, the generation of an unstructured mesh of high-order spectral=hp elements

is accomplished through the subdivision of a coarse mesh of linear elements. The method is
described in detail in Reference [12] but for the sake of completeness we include here a brief
summary.
Given a contiguous surface representation in terms of bicubic spline surface and lines

of intersection represented by cubic splines the surface is initially discretized into a coarse
distribution of linear surface elements. The local topology of these linear element is in�uenced
by the desire to include a boundary layer region or by taking into account surface curvature
as described in Section 3.1. A high-order surface discretization is then generated by following
a ‘bottom-up’ procedure where initially the triangular edges are discretized into P + 1 points
for a Pth order polynomial mesh. Subsequently the (P − 3)(P − 2)=2 points internal to the
triangular faces are generated to complete the polynomial representation. The high-order point
generation is typically performed in the parametric space of the bicubic splines which may
have a non-isometric mapping to the physical space. In order to optimise the high-order
element point distribution a non-linear minimization procedure is adopted, as discussed in
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Figure 6. The subdivision of a valid mesh of linear elements (a) to generate a high-order tetrahedral
mesh (b) might lead to elemental regions with singular Jacobian mappings.

Reference [12], which generates the edge and face points as geodesics of the surface with a
view to minimizing the variation in the surface Jacobian.
The mesh generation then proceeds in a manner consistent with standard linear mesh gen-

eration process. Our current approach is based upon the method of advancing layers described
in Reference [13] but alternative mesh generation techniques can also be used. In this method
the vertices of the original linear triangulation in the near-wall regions are assigned a direction
and new interior vertices are created in successive layers up to a prescribed boundary layer
thickness. These points are then linked to form a mesh of tetrahedral or prismatic elements,
known as the boundary layer mesh. The rest of the domain is �nally �lled with a mesh of
linear tetrahedra which, in our case, is generated by means of the advancing front technique.
The high-order surface de�nition implies that the elements adjacent to a deformed wall

will also have curved internal faces which are constructed as a blend, consistent with the
spectral=hp element expansion, between the internal straight edges and the deformed surface
edge (see Reference [14] for more details). In general high-order elements allow for all
internal face and edges to be deformed which, as discussed in the work of Dey et al. [15],
may be necessary in very curved domains.

3.1. Curvature based re�nement for high-order elements

Curvature based re�nement in which the mesh size is obtained as a function of the curvature
has been proposed by several authors [10; 16] as a way to obtain an accurate piecewise linear
approximation of a curved surface. In a previous paper [12] we have shown that the use of
this technique enhances the quality of the high-order meshes generated from linear tetrahedral
and prismatic meshes. However, this criterion on its own is not su�cient to guarantee validity
of all high-order elements as it does not account for the possible intersection of the boundary
sides and faces with those on the interior. Here we propose an alternative method more
suitable for the discretization of boundary layers.
Following the notation of Figure 7, the curve is locally approximated by a circle of radius

R, the radius of curvature. We assume that the mesh spacing can be represented by a chord
of length c in the circle and a spacing � in the normal direction.
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Figure 7. Notation for mesh spacing calculation on curves.

Figure 8. Notation for mesh spacing calculation on surfaces.

In the modelling of viscous �ows, the value of � is usually prescribed to achieve a certain
boundary layer resolution. The value of c is therefore chosen to guarantee that the osculating
circle representing the curve does not intersect the interior sides of the elements, i.e. �¿90◦

for the triangular element. The value of c, which should be considered as a maximum mesh
spacing, can now be obtained as a function of R and �. Its value ct for triangular elements is

ct6R

√
2�
R+ �

: (6)

The corresponding value cq for quadrilateral elements is

cq6
2R�
R+ �

√
1 +

2R
�

(7)

where the boundary displacement is assumed to be the same on either side of the rectangle.
It is interesting to notice that, for a given �, the quadratic element allows for a mesh spacing
cq which is about twice the value of spacing ct for the triangular element.
The extension of this method to surfaces is straightforward. The re�nement criterion given

by formulas (6) and (7) is used for the two principal directions and the corresponding mesh
spacings, c1 and c2 in Figure 8, are calculated from the values of the principal curvatures
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Figure 9. Curvature based mesh re�nement for prismatic elements: (a) Re�nement according to
Equation (7), (b) Re�nement is applied to concave regions only.

k1;2 = 1=R1;2. Expressions for the curvature of curves and surfaces in implicit form can be found
in Reference [11]. Reference [17] provides the equivalent expressions for the parametric form.
An example of a hybrid mesh generated for the geometry previously considered in Figure

6 and using criterion (7), is shown in Figure 9(a). This high-order mesh does not contain
singular elements. However, the re�nement applied here does not account for the sign of the
surface curvature and the use of criterion (7) to ensure element validity is too restrictive in
those regions where the domain is locally convex. For a convex region, the less restrictive
criteria �¡R and c¡2R su�ce to guarantee element validity. This is highlighted in Figure
9(b) where the re�nement criterion (7) has been selectively applied to concave regions only.
The result is a valid mesh with fewer elements.

4. SPECTRAL=hp FLOW SIMULATION

Highly accurate algorithms, for example as Fourier methods, have proved successful in
analysing fundamental �uid mechanics through the use of direct numerical simulations on
simple con�gurations such as channel �ows. However many problems of interest, such as the
area of vascular �ow modelling, involve complex geometries. It is the ability of �nite element
and �nite volume methods to handle complex geometries which has led to their widespread
application. Nevertheless, the low accuracy of these methods makes them relatively ine�cient
from the point of view of accuracy per unit of computational power. As illustrated in Figure
10, by applying higher order polynomial expansions within a series of elemental sub-domains,
spectral=hp element methods [14] combine the high accuracy of Fourier techniques with the
geometric �exibility of �nite elements thereby providing an e�cient method of achieving the
highest possible accuracy for a given computational cost.
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Figure 10. Illustration of the spectral=hp element discretization.

Figure 11 presents a comparison between standard �nite element and spectral=hp �nite
element approaches for the test case of potential �ow around a circular cylinder where the
potential is given as �(r; �)=U0(r+ a2=r) cos �. The standard �nite element converges as the
characteristic size of each element in the mesh, denoted by h, is reduced. Therefore a series
of six mesh re�nements was considered as shown in Figure 11(a). In the spectral=hp �nite
element approach, a �xed resolution mesh was considered and convergence was achieved by
increasing the order of the polynomial expansion within each element. The piecewise spectral
approximation considered here is continuous across elements.
The computational cost per degree of freedom in the spectral=hp element method is pro-

portional to Nel PM+1 where Nel is the number of elemental subdomains and M is the spatial
dimension of the approximation. Although the computational cost per piece of information is
higher using the spectral=hp element method for smooth solutions, the rate of convergence
is exponential in the polynomial order. The error per unit of computational work is accord-
ingly less. This point is illustrated in Figure 11(b) which shows the error in the solution
as a function of computational work. The dotted lines show the error per unit of computa-
tional work for the standard �nite element approach (h-type convergence) using a �rst and
second order polynomial approximation. For these cases we have considered computational
work to scale as the number of degrees of freedom. The solid lines show the error per unit of
computational work when the higher polynomials order is increased on �xed meshes A and
C in Figure 11(b) (p-type convergence). For these cases we have scaled the computational
work as Nel P3. We see that for larger errors it is impossible to distinguish between the two
approaches since the exponential convergence is only observed when the solution is captured
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Figure 11. A model problem of potential �ow around a circular cylinder was considered on a series of
six meshes as shown in (a). The error in the solution as a function of idealized computational cost for
the standard �nite element approach (dotted lines) and the spectral=hp �nite element approach (solid

lines) is shown in (b).

spatially. However if we require a lower error then the spectral=hp element method can achieve
this requirement at a lower computational cost as the exponential rate of convergence is
realized.
These methods provide an e�cient algorithm to perform accurate time dependent simula-

tions [18; 19] and have been used to solve the unsteady Navier–Stokes equations with great
success, particularly in the study of fundamental �uid dynamics through the use of direct
numerical simulations [20; 21].

5. APPLICATION TO VASCULAR FLOWS

Our area of interest is the surgical intervention required when an artery becomes blocked,
typically due to vascular disease, and the blockage is circumvented by an anastomosis. This
procedure typically requires the construction of an alternative path normally using an autolo-
gous vein. A high percentage of long term failures of arterial bypass grafts are observed at
the downstream, or distal, end of the bypass loop. Understanding the nature of this failure
has made the geometric con�gurations considered in this section (Figures 12–14) a particular
focus of three-dimensional computational modelling.
Vascular modelling of this type can roughly be split into two categories. The �rst is to con-

sider model geometries, as shown in Figure 12, under either average or pulsatile waveforms.
The second is to consider more anatomically correct situations as illustrated in Figure 14. The
advantage of the �rst approach is that a more fundamental understanding can be obtained in
order to build up a better picture of the �ow dynamics in the anatomically correct example.
A direct analysis of the anatomical model can be very di�cult especially under physiological
pulsatile conditions when the artery walls may also be distensible.
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Figure 12. Advection of two lines of constant vorticity in a model 45◦ bypass graft.

Figure 13. High-order mesh and distribution of surface shear stresses obtained using a fourth order
polynomial approximation in the hp=spectral CFD solver. The values of the shear stress have been

normalized so that the in�ow wall shear stress (Hagen–Poiseuille �ow) is 1.
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Figure 14. Advection of a vorticity ring through an anatomically correct porcine bypass graft.

In Figure 12 we consider a model 45◦ bypass junction where the in�ow is a fully devel-
oped Hagen–Poiseuille �ow at the location shown in Figure 12(a) at a Reynolds number of
Re=250. The computational domain contains 1742 tetrahedral elements and has been com-
puted up to a polynomial order of P=8 implying 287 430 local degrees of freedoms. This
calculation was �rst reported and validated in Reference [22].
A method for calculating particle trajectories on unstructured and hybrid meshes using

a high-order approximation of the velocity �eld has been proposed in Reference [23]. The
calculation of the particle trajectory is based on a standard Runge–Kutta integration in time but
using a novel hybrid approach that advances a particle in both the physical and the parametric
space without the need for non-linear iterations.
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Following the arguments in Reference [24] we can idealize the Hagen–Poiseuille in�ow
as a lumped vorticity ring of aligned normal to the axis of the in�ow branch. Considering
the advection of this vorticity ring through the junction as shown in Figure 12(a)–12(c)
we can interpret how secondary �ow motions are established as the vorticity ring trans-
ports through the junction. Secondary �ow motions can be very signi�cant in the particle
transport and mixing and therefore represent an important factor in disease modelling. These
secondary motions establish two vortices known as Dean vortices which are also illustrated in
Figure 14 using a technique known as coherent structure identi�cation [25; 24].
The two next CFD calculations involve anatomically realistic geometries. The �rst example

correspond to the femoral–tibial bypass graft described in Section 2. The upstream end of
the host vessel was assumed to be completely occluded. The velocity pro�le at the in�ow
section of the bypass graft was taken to be a steady Hagen–Poiseuille pro�le corresponding
to a Reynolds number Re=400. Figure 13 shows the high-order mesh, with 1624 prismatic
elements and 3545 tetrahedral elements, and the distribution of wall shear stresses calculated
using a fourth-order polynomial approximation. The solution shows high values of wall shear
stress in the regions of the host vessel where the attachement of the graft has caused a
narrowing of its cross-sectional area.
Figure 14 shows a series of time slices from a steady computation at Re=100 in a re-

construction of an anatomically correct porcine coronary bypass graft. Once again an analytic
in�ow is imposed based on the Hagen–Poiseuille �ow. The computational domain is a hybrid
mesh consisting of 750 prismatic elements and 1719 tetrahedral elements and the computation
was performed at a polynomial order of P=7. What is interesting about this case is that
whilst the overall geometry is close to having a plane of symmetry, as shown in Figure 12,
the �ow characteristics are distinctly di�erent once the vorticity ring has transported through
the junction. However the asymmetry of the slight narrowing (stenosis) at the junction is
su�cient to completely distort the orientation of the secondary recirculation cells causing one
to �nally dominate. This modi�cation is illustrative of the sensitivity of the �ow dynamics to
the geometry and therefore to the reconstruction process.

6. CONCLUSIONS

We have discussed the application of implicit variational functions to reconstruct in vivo
data from arterial bypass grafts. Using high-order algorithms to construct a computational
mesh and solve the Newtonian �uid mechanics we have demonstrated the application of these
techniques to anatomically correct and model arterial bypass grafts. Steady �ow results in
these two con�gurations have illustrated the sensitivity of the �ow to features of the geometric
reconstruction.
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